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Abstract—The objective of this study is to estimate the cross-
sectional and longitudinal validity (sensitivity to change) of a
novel algorithm as a new measure to assess upper-limb functional
ability in stroke survivors. This algorithm models functional
ability by mapping an array of kinematic variables extracted
from the analysis of movements made by patients while playing
bespoke, professionally-written action video games to the CAHAI-
10 (Chedoke Arm and Hand Activity Inventory). A second
aim of the research is to determine how the output from the
model compares with existing measures of functional ability to
distinguish change in patients in the acute/chronic stages of their
recovery.
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I. INTRODUCTION

With ever improving medical care the chances of surviving
stroke is more common now than at any point in the past. At
current rates of improvement in care it is expected survivors
will increase beyond 70 million by 2030. Unfortunately, on sur-
viving stroke approximately 80% of patients endure hemipare-
sis [17], [9]; partial or complete paralysis due to brain injure.
The road to recovery for such patients requires rehabilitation
therapy. However, the lack of resources (therapists, money,
clinics) hindered further by geographic dispersion of patients
results in a practical inability to monitor and tailor appropriate
therapies per-patient. This brings a pressing priority to seek a
practical, cost efficient, delivery of rehabilitative care to stroke
patients.

One possible avenue for cost efficient delivery of reha-
bilitative care is computer enabled serious gaming. Research
has shown that it has become possible to encode rehabilitative
strategies into a serious game (e.g., [16], [14], [7]). As games
themselves become more physically interactive there is a
real possibility of utilising off-the-shelf gaming devices for
rehabilitation (e.g., Kinect, PSMove, Wii Motes) (e.g., [15],
[11]). Most promising is the recent results from clinical studies
that assess the suitability of serious gaming [10]. Such research
is important as it clearly identifies the benefits of serious
gaming as successfully motivating patients to participate in a
positive way to attain their rehabilitative goals. Cumulatively,
the literature clearly identifies serious gaming as promoting
physical activity in patients (not limited to stroke) beyond that
achievable without gaming involved.

Rehabilitative literature within the serious gaming commu-
nity has so far concentrated on the delivery of rehabilitative
strategies embodied within video games. The reason why video
games have proved so popular for rehabilitation is that motor
learning underpins recovery after stroke. The rehabilitative
strategies encoded within a video game encourage movement
that in turn promotes the relearning of movements or an ability
to compensate for the lack of movement. Such motor learning
forms the basis for assessing patient progress: motor learning
in normal subjects and functional neuroplasticity leading to
post-stroke motor recovery have been shown to share the same
molecular and genetic substrates and brain networks [13].
The alternative to motor learning is to observe behavioural
outcomes, a much more time consuming task and bespoke
for each patients. Therefore, motor learning provides an ideal
marker of the biological system underpinning rehabilitation.
Measuring motor learning is a time consuming task that re-
quires clinical intervention (therapist). An ideal scenario would
be for the video game itself to provide a clinical assessment
of motor learning.

An important function of video games used in rehabilitation
is to motivate via reward. To achieve this the patient is
monitored and rewarded on their ability to move in relation
to the games goals. One may envisage that the capturing of
such data will translate into a suitable assessment strategy for
motor learning. Unfortunately, this is not the case as such
data is substantial and carries a large degree of variance. In
the literature only broad assumptions can be made regarding
the degree of movement and directional activity of patients
from in-game data. This is OK for scoring and encouraging
participation, but not suitable for replacing clinical assessment
for directing an intervention strategy. Therefore, serious games
are still benchmarked against a therapists scores for motor
learning. A popular scoring technique is the Chedoke Arm
and Hand Activity Inventory (CAHAI) for upper limb. This in
itself is a time consuming and costly task, requiring therapist
and patient to be co-located and may take up to 3 hours to
complete per-patient.

Although a complete serious game rehabilitative solution
would require in-game decision-making regarding interven-
tion (i.e., exercise schedule based on in-game analysis), an
important first step is to create a statistical model that can
successfully score a patient using only in-game data. This
will require the video game to at least be as competent
as a therapist, or future interventions directed by the game
itself may be more harmful than beneficial. In this paper we



present a statistical model that uses only in-game data that
can achieve at least the fidelity of therapist directed CAHAI
assessment to determine change in stroke patients. This study
is part of a wide reaching (commercial cloud based delivery of
rehabilitative care) research project undertaken within the NHS
in the UK to deliver upper limb rehabilitative intervention via
serious gaming to stroke patients. Data has been derived from
the commercial video Circus Challenge [19] and a statistical
model created specifically based on the output data produced
by a prototype commercial off-the-shelf game input device
from Sixense http://sixense.com/hardware/wireless. The data
was gathered from over 100 patients over the period of a
year. During the study, therapists also carried out CAHAI
assessments. These therapist-based assessments were used to
benchmark the statistical model. We show for the first time that
a serious game is not limited to encouraging patient recovery,
but can cost efficiently monitor patient change to a clinical
standard in the home.

II. METHODS

Ethical approval was obtained from the National Research
Ethics Committee and all work undertaken was in accordance
with the Declaration of Helsinki. Written, informed consent
from all the subjects was obtained.

A. Participants

A cohort of 26 of stroke survivors without significant
cognitive or visual impairment were recruited for the study.
Full patient characteristics are provided in Table I. Further
inclusion criteria required that participants were able to grasp
game controllers with their paretic hand and move their
affected limb against gravity. Patients had a wide range of
upper limb function as reflected in their Chedoke Arm and
Hand Activity Inventory (CAHAI) scores. None had previously
played video games but all participated in a home-based
rehabilitation programme using the Circus Challenge video
games over a 3 month period. The games can be played either
standing or sitting down.

Characteristic Value
1 Genger (M/F) 18/8
2 Stratification (chronic/acute) 18/8
3 Age*
4 + Chronic 58 (43-78)
5 + Acute 50 (33-77)
6 Weeks since stroke*
7 + Chronic 59 (36-414)
8 + Acute 4 (1-6)
9 CAHAI-10*

10 + Chronic 42 (13-70)
11 + Acute 49 (14-65)

TABLE I: Note: * Median (Range)

B. Measures

Chedoke Arm and Hand Activity Inventory.: The CAHAI-
13 is a measure of upper limb functional ability with 13
items which are assessed using a 7-point quantitative scale[1].
Shortened versions of the CAHAI with 7,8 and 9 items
(CAHAI-7, CAHAI-8 and CAHAI-9 respectively) also exist
and have been proven to maintain the same degree of validity
as the full version of the measure [3]. A shortened version with

the first 10 items of the CAHAI-13 is used in this study which
we will refer to as CAHAI-10. The maximum and minimum
scores of this subtest are 70 and 10 respectively.

Circus Challenge Assessment Game (CCAG).: Circus
Challenge (CC) is a new stroke rehabilitation tool based
on 10 computer-based video games. Control of the video
games is achieved via 100 separate upper limb actions based
on identified patterns of co-ordinated bimanual movements,
which together form the functional basis for activities of daily
living [12].

The upper-limb functional ability measure is derived from
a shortened version which we refer to as the Circus Challenge
Assessment Game. This version comprises 40 representative
actions, ranging from the simplest mirrored movements where
the same movement is performed simultaneously by each
upper limb, to co-ordinated movements where each arm and
hand performed different movements in a coordinated manner.
Actions in the CCAG are presented in order of increasing
difficulty and the data generated from measuring the arm and
hand movements whilst patients performed these actions are
used to derive an algorithm measuring upper-limb functional
ability [19]. The maximum and minimum scores of this subtest
are similar to those of the CAHAI-10.

C. Design

Data is collected using a longitudinal study design. Pa-
tients’ assessments were made at baseline and then weekly for
the first four weeks followed by an assessment every other
week for a further eight weeks; eight assessments are made in
total. Some patients are still being followed in the study and
hence the number of observations per subject varies.

Research assessments were carried out in the patient’s own
home. At each occasion, an occupational therapist trained in
the administration and scoring of the CAHAI undertook a
blinded clinical assessment of upper limb function using the
CAHAI-10 as a measure. Patients were also introduced to
Circus Challenge at baseline and asked to play the game in
their home each day for approximately thirty minutes. From
occasion 2 through to occasion 8, patients were also asked to
play the CHAG, once they had familiarized themselves with
Circus Challenge.

Individuals were stratified, a-priori, into two groups accord-
ing to the amount of change in their upper limb functional
ability expected throughout the duration of the study: Group
1, the acute group, consisted of participants who enrolled into
the study within three months of their first ever stroke; and
Group 2, the chronic group, was formed by participants who
were 6 months of more postonset of stroke, Table I.

III. DATA ANALYSIS

Prior to showing the comparative study between the CCAG
and the CAHAI-10, we first check the validity of the latter
measure.

A. CAHAI-10 validity

Shortened CAHAI versions with 7,8 and 9 items have been
studied elsewhere [3] and found to have similar validity and
sensitivity to change as the original CAHAI-13. This study



does not collect data for the full CAHAI but all the above
mentioned shortened versions of the CAHAI contain all the
items measured by the CAHAI-10 version. We, arbitrarily,
choose the CAHAI-9 as a reference for comparison with the
CAHAI-10 in a convergent construct validation process.

Between-subjects correlation between CAHAI-9 and
CAHAI-10 raw scores is 0.99 (p < .001). Likewise, within-
subjects correlation between CAHAI-9 and CAHAI-10 raw
scores is 0.98 (p < .001). These results are similar to
those reported for other shortened versions of the CAHAI and
demonstrate that the CAHAI-10 is an appropriate measure to
account for upper-limb functional ability.

B. CCAG model development from motion data

Collecting movement data using the CCAG varies depend-
ing on the familiarity of the player but, on average, it does not
require more than 20 minutes; likewise, the assessment game
has the added advantage that it does not require of the physical
presence of an occupational therapist and it lends itself to be
monitored remotely.

Each time the CCAG is played position and orientation data
for each of the 40 movements which comprise the game are
stored in a computer. That raw data is then processed and up
to 320 kinematic variables are derived from it. Those variables
are related to underlying features which define how well the
movement is performed; namely, speed, fluency, synchrony and
accuracy.

The full inner-workings of the model building and selection
process is explained elsewhere [19]. In brief, however, our
approach is to use those movement covariates to build a
regression model for the validated CAHAI-10 scores. After
a variable selection process, twelve variables are selected.
Furthermore, to account for patient heterogeneity we resort
to a linear mixed model [4] with random effects. The model
is linear with respect to the selected movement covariates; and
the random effects can be thought of as a tool which allows
for patients to have differing upper-limb functional ability (i.e
random intercept) and for acute patients to experience different
recovery rates (i.e. random slope). But more importantly,
the random effects permit us to predict the recovery curve
for future patients (not in the study) by taking into account
patient-to-patient and within-patient variability estimated from
subjects in the study.

The proportion of the total variability in the response
variable (CAHAI-10) accounted for by this model is 91%.
A check of the model performance can be seen in Figure 1,
where the model fitted values are plotted against the clinically
assessed CAHAI-10 for the chronic and acute group. Figure 2
(chronic group) and Figure 3 (acute group) allow for a closer
inspection of model performance by graphing the observed and
fitted values longitudinally for each of the patients.

C. Sensitivity to change

No gold standard exists as a measure of upper-limbs
functional ability. We therefore resort to a convergent construct
validation process [20, p.257] whereby the correlation between
the proposed measure (CCAG) and an accepted reference
measure (CAHAI-10) is calculated. Validity will be confirmed

if the new measure is shown to be correlated with the reference
measure.

1) Cross-sectional validity: The interest when assessing
cross-sectional validity is in understanding the pattern of
variation across patients, i.e. are subjects with high values of
the reference measure also likely to have high values of the
new measure and vice-versa? In answering this question, we
resort to a correlation coefficient between the subject means
for each of the two measures weighted by the number of
observations for the subject [6]. We will refer to this measure
as a between-subjects correlation.

The between-subjects correlation (i.e. the correlation be-
tween the subject means weighted by the number of obser-
vations per subject) between the CAHAI-10 and the CCAG
model output scores is 1.00 (p < .001). This is a good
indication that the CCAG model output can be used as a
surrogate measure to determine upper-limb functional ability.

2) Longitudinal validity: The situation is different when
investigating longitudinal validity, which is the main interest in
the study of sensitivity to change. In this case, we are interested
in how the measures vary across time: is an increase/decrease
of the reference measure within a subject associated with an
increase/decrease of the new measure? To assess this question,
we consider the following model

yij = ↵i + �zij + "ij (1)

where yij , zij are the CAHAI-10 and CCAG model scores
respectively for patient i at occasion j. The coefficient � is
the parameter of interest, indicating weather two measures
change in the same way simultaneously. Patients are treated
as categorical variables with ↵i being an intercept which
is different for each patient and being used to remove the
variability between subjects; finally, "ij is an error term.

The analysis of variance table for this model is provided
in Table II. Assessment of longitudinal validity is given by
the middle row in the table. The effect of CCAG scores on
CAHAI-10 can be assessed via a hypothesis test H0 : � = 0.
The p-value is calculated from the F-test in Table II which
is less than 0.001 indicating a significant effect. We further
look at the test H0 : � = 1 and calculate the p-value from a
likelihood ratio test in Eq. (1). The p-vlue is 0.43, indicating
that we accept the hypothesis H0 : � = 1 and the two measures
do change in the same way.

Following discussion given in [5], sensitivity of change
can also be assessed by a so called within-subjects correlation
coefficient which is the proportion of the variation caused by
the covariate CCAG scores in Eq. (1) after the within patient
variation removed. The within-subject correlation coefficient
(r) is calculated from Table II

r =
r

1114.51

1114.51 + 1651.42
= 0.63 ,

for which the p-value testing Ho : r = 0 is also given from
the F-test in Table II (p < .001). This hypothesis is equivalent
at testing H0 : � = 0.

Breaking down the within-subjects correlation in groups,
we have obtained that r = 0.34 (p = .002) for chronic group
and r = 0.80 (p < .001) for acute group. It makes sense
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Fig. 1: Fitted CAHAI using random-effects model vs clinically assessed CAHAI. Panels split patients into chronic and acute; symbols and
colours are used to differentiate subjects.

intuitively that r for the acute is higher than the chronic as it
is debatable whether chronic patients show any improvement
at all in the study. The longitudinal plots presented in Figures
2 and 3 confirm the findings.

The result presented in this section shows that the within-
subject correlation between both measures is significant, in-
dicating that the CCAG model scores are able to pick up
longitudinal changes within patients particularly for acute
patients.

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square

Variance
ratio p-value

Patients 25 29153.90 1166.16 83.33 –
zij 1 1114.51 1114.51 79.64 0.0000
Residuals 118 1651.42 14.00

TABLE II: Analysis of variance for the model in Eq. (1).

3) ROC analysis: We also interested in answering the re-
search question as to which of the two measures, the CAHAI-
10 or the CCAG, is more sensitive to change. A well accepted
approach to compare the performance of different measures
for classification purposes is to measure the area under the
curve (AUC) in an ROC (Receiver Operating Characteristic)
plot. The higher the area, the better the classification power of
the measure.

The ROC plots for each of the two measures have been
built as follows: (1)a priori patients are stratified into two
groups, chronic and acute, based on the expected amount of
change they are likely to undergo during the study; (2) for each
patient, the amount of change in the corresponding measure is
determined by subtracting the value of the measure at the last
occasion from its baseline; (3) the performance of the measure

to classify patients is assessed over the range of all possible
values in the amount of change observed. The result has been
graphed in Figure 4.

In comparing the area under the curves for each measure
we have taken into account that the curves are correlated
(i.e. both curves derive from multiple measurements on the
same sample) and use the method by Delong et al. [8] as
implemented by Robin et al. [18]. The null hypothesis for
the comparison is that there is no difference in classification
performance between the two methods against a two-side
alternative hypothesis. The conclusion of this study is that there
is no evidence to conclude one of the methods is superior to
the other (p = .63).

IV. CONCLUSIONS

The main aim of this article is to assess the cross-sectional
and longitudinal validity of a model derived from video
game data (Circus Challenge) as a measure of upper limb
functional ability. In that endeavour, as a side-product, we
have first checked that the CAHAI-10 was a valid measure.
This approach deserves a brief explanation. Versions of the
CAHAI with 13, 9, 8 and 7 items had all been previously
validated [2], [3]. The CAHAI-10 version we have used as
a reference contain all the items in the CAHAI-9 plus the
additional activity zip up the zipper. The more important reason
as to why we resorted to this new version is rooted in the
design of Circus Challenge as a therapeutic tool for stroke
survivors: there are several movements embedded throughout
Circus Challenge mimicking activities of daily living and
which are of a very similar nature to this additional task.
The conclusion of the validation process is that the CAHAI-
10 maintain the same degree of validity as other shortened



●
● ●

●●
● ●

●
● ● ● ●

●●
●

● ●

● ●

●
●

●
●

●

●

●
● ●

●
●

●

● ● ●

● ● ●

●

●
● ●

● ● ●

● ● ●
●

● ● ●
●

●
●

●
●

●
● ● ● ● ●

● ●
● ●

●

●●
● ●

●

●
●

●

●

●
● ● ● ●

●

●
●

●
● ●

●

●
●

●
● ●

●
●

● ●
● ●

● ●

●

●

● ●
●

● ● ●

●

●
●

●
●

●
● ● ● ●

● ● ●

● ●

●
●

●
●

●

●

●
●

● ●

● ●

●

●
●

●

● ● ●
●

● ●

●
●

● ●
●

●

● ●
●

●

●

● ●●
●

●
●

● ● ●

●

●
●

●

●
●

● ●
●

● ●
●

● ● ●

●
●

●●
●

● ●
●

●
● ● ● ●

●
● ●●

●
● ●

● ● ●

la003 la011 la005 la024

la035 la016 la009 la021

la028 la020 la001 la019

la036 la004 la010 la007

la013 la002  

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
Visit

CA
HA

I−
10

, c
hr

on
ic 

su
bje

cts
 −

 cl
ini

ca
lly

 a
ss

es
se

d 
 vs

  f
itte

d

Fig. 2: Chronic subjects clinically assessed CAHAI (solid dots) vs fitted CAHAI for random-effects (solid blue line) model. Panels represent
patients and are ordered, from bottom left to top right, by increasing mean CAHAI level.

versions which in line with previous findings by Barreca et al.
cited above.

We have adopted a convergent construct validation ap-
proach using the CAHAI-10 scores as reference to show that

the Circus Challenge Assessment Game is a valid (cross-
sectionally and longitudinally) tool to make inferences about
upper limb functional ability. Its classification performance
using ROC curve analysis has been found to be no different
from that of the CAHAI-10 which brings about the question as
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Fig. 3: Acute subjects clinically assessed CAHAI (solid dots) vs fitted CAHAI for random-effects (solid blue line) model. Panels represent
patients and are ordered, from bottom left to top right, by increasing mean CAHAI level.
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Fig. 4: ROC curves for stroke patient classification into chronic/acute
groups using the CAHAI-10 and the CCAG measures. There is no
significance difference in any of the measures performance (p = .63).

to why a new measure is needed. One of the main advantages
of the game as a rehabilitation tool is that it is designed to be
played at the patients’ own home. Likewise, the model allows
making inferences about upper-limb functional ability remotely
and with limited therapists intervention. This should only be
seen in the context of reaching out to an ever-increasing
population of stroke survivors: with the same amount of
resources, remote monitoring allows therapists to effectively

follow up many more patients.
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